skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roytershteyn, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of pickup ions (PUIs) in the solar wind interaction with the local interstellar medium is investigated with 3D, multifluid simulations. The flow of the mixture of all charged particles is described by the ideal MHD equations, with the source terms responsible for charge exchange between ions and neutral atoms. The thermodynamically distinct populations of neutrals are governed by individual sets of gas dynamics Euler equations. PUIs are treated as a separate, comoving fluid. Because the anisotropic behavior of PUIs at the heliospheric termination shocks is not described by the standard conservation laws (a.k.a. the Rankine–Hugoniot relations), we derived boundary conditions for them, which are obtained from the dedicated kinetic simulations of collisionless shocks. It is demonstrated that this approach to treating PUIs makes the computation results more consistent with observational data. In particular, the PUI pressure in the inner heliosheath (IHS) becomes higher by ∼40%–50% in the new model, as compared with the solutions where no special boundary conditions are applied. Hotter PUIs eventually lead to charge-exchange-driven cooling of the IHS plasma, which reduces the IHS width by ∼15% (∼8–10 au) in the upwind direction, and even more in the other directions. The density of secondary neutral atoms born in the IHS decreases by ∼30%, while their temperature increases by ∼60%. Simulation results are validated with New Horizons data at distances between 11 and 47 au. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell vpic, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed. 
    more » « less
  4. Abstract Cherenkov radiation from a pulse of charge propagating along the magnetic field in a magnetized plasma is analyzed using theory and fluid‐kinetic simulations. Besides radiation into whistler modes, the subject of many previous investigations in laboratory and space, radiation can occur through extraordinary (X) modes. Theory and simulations demonstrate that X mode radiation efficiencies can be orders of magnitude higher than those into whistler modes. Test particle simulations of the dynamics of energetic electrons in the beam‐generated wavefield show that X modes can also induce pitch angle scattering much more efficiently than whistlers. While coherence effects associated with spreading of realistic beam pulses may limit the size of the X mode source region, a simple model of beam dynamics suggests that the size of this region could be substantial (hundreds of meters for ionospheric conditions). These results have potentially important implications for many problems, including understanding losses in the near‐Earth environment and radiation belt remediation. 
    more » « less